## **Polyfunctionalized Cage Compounds by Pericyclic Domino Processes of 4,5-Dicyanopyridazine with Dienes: Applications and** Limits

Donatella Giomi,\* Rodolfo Nesi,\* Stefania Turchi, and Elena Mura

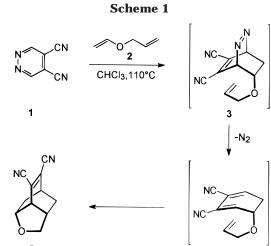
Dipartimento di Chimica Organica 'Ugo Schiff' - Centro di Studio del CNR sulla chimica e la struttura dei composti eterociclici e loro applicazioni, Università di Firenze, Via Gino Capponi 9, I-50121 Firenze, Italy

Received July 27, 1999

The title compound **1** was found to behave as an attractive *masked bis-diene* to give 4-oxatricyclo-[4.3.1.0<sup>3.7</sup>]dec-8-ene, 5-aza- and 5-silatricyclo[5.3.1.0<sup>3.8</sup>]undec-9-ene, tricyclo[3.2.1.0<sup>2.7</sup>]oct-3-ene, and tricyclo[5.3.1.0<sup>3.8</sup>]undec-9-ene derivatives through purely pericyclic, three-step homodomino processes with diverse bis-dienophiles; whereas the reaction with myrcene (21) was characterized by a complete sitoselectivity affording compound **25**, treatment of **1** with (R)-(-)- $\beta$ -citronellene (**26a**) gave a 3:1 mixture of the homochiral diastereomers **30a** and **31a**. Some limits of this methodology, mainly arising from competitive side reactions upon the key cyclohexa-1,3-diene intermediates, are emphasized. The structures of the new compounds were established on the basis of spectral data.

Although 1,2-diazines have been scarcely employed as heterodienes in inverse-electron-demand [4 + 2] cycloadditions,<sup>1</sup> probably due to some discouraging results,<sup>2</sup> a systematic investigation undertaken by our group clearly demonstrated that 4,5-dicyanopyridazine (DCP) (1) exhibits a remarkable reactivity toward several  $2\pi$  electron counterparts.<sup>3</sup> Particularly, after DCP was shown to react under relatively mild conditions with 2,3-dimethylbuta-1,3-diene to give a tricyclo[3.2.1.0<sup>2,7</sup>]oct-3-ene skeleton through a pericyclic domino process,<sup>4</sup> it has been more recently exploited in similar reactions with diverse bisdienophiles for a direct access to carbo- and hetero-cage derivatives.<sup>5</sup> In this context, we wish now to report new results on the possibility of expanding the scope of this attractive strategy for the synthesis of title compounds.

## **Results and Discussion**


Treatment of 1 with an excess of allyl vinyl ether (2) in chloroform at 110 °C for 24 h afforded nearly quantitatively 8,9-dicyano-4-oxatricyclo[4.3.1.0<sup>3,7</sup>]dec-8-ene (5) by a three-step homodomino reaction: the labile primary adduct, coming from an intermolecular [4 + 2] cycloaddition of DCP upon the most activated double bond of 2, evolved into the final product by loss of nitrogen followed by an intramolecular Diels-Alder reaction of the resulting cyclohexadiene 4, strongly assisted by entropic acceleration (Scheme 1). Noteworthy, no trapping was observed for 4 by the large excess of the reagent.

Scheme 1 n 2 CHCl3,110°C

The same substrate reacted more slowly with vinyl methacrylate (6) to give the desired tricyclic lactone 8 in 56% yield; however, phathalonitrile (9) (39%) was also obtained in this case through a competitive elimination of methacrylic acid from the likely common intermediate 7 (Scheme 2). Even longer reaction times were required with vinyl cinnamate (10) (Experimental Section), and compound 11 was isolated as a pure product in 34% yield by careful resolution of the complex reaction mixture.

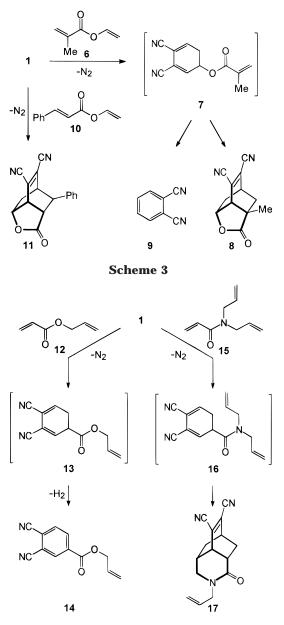
Unfortunately, repeated attempts to form in an analogous fashion 5-oxatricyclo[5.3.1.0<sup>3,8</sup>]undec-9-en-4-ones were unsuccessful. Whereas reactions of 1 with allyl methacrylate, allyl cinnamate, and allyl crotonate led to untractable materials, treatment of DCP with 12 gave the ester 14 in 40% yield as a result of a preferential aromatization of the intermediate 13; according to a previous result,<sup>5</sup> this conversion probably involves a hydrogen transfer from the latter to the starting dicyanopyridazine 1.

On the contrary, when 12 was replaced with the amide **15**, the tricyclic  $\delta$ -lactam **17** was obtained in 37% yield through the open-chain compound 16 (Scheme 3).6



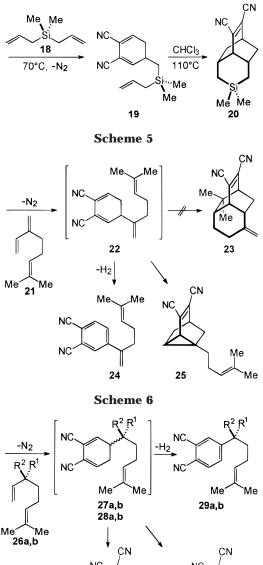
<sup>(1) (</sup>a) Boger, D. L.; Weinreb, S. N. Hetero Diels-Alder Methodology in Organic Synthesis; Academic Press: New York, 1987; p 313. (b) Coates, W. J. In *Comprehensive Heterocyclic Chemistry II*; Boulton,

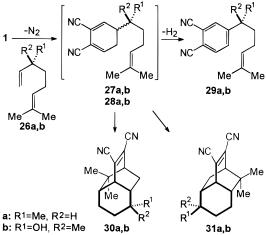
 <sup>(2) (</sup>a) Maggiora, L.; Mertes, M. P. J. Org. Chem. 1986, 51, 950. (b) Benson, S. C.; Gross, J. L.; Snyder, J. K. J. Org. Chem. 1990, 55, 3257.
(3) (a) Nesi, R.; Giomi, D.; Turchi, S.; Falai, A. J. Chem. Soc. Chem.


Commun. 1995, 2201. (b) Turchi, S.; Giomi, D.; Capacioli, C.; Nesi, R. Tetrahedron 1997, 53, 11711. (c) Turchi, S.; Nesi, R.; Giomi, D. Tetrahedron 1998, 54, 1809. (d) Nesi, R.; Turchi, S.; Giomi, D.; Corsi,
C. Tetrahedron 1998, 54, 10851.

<sup>(4)</sup> Nesi, R.; Giomi, D.; Turchi, S.; Paoli, P. Tetrahedron 1994, 50, 91**8**9.

<sup>(5)</sup> Giomi, D.; Nesi, R.; Turchi, S.; Coppini, R. J. Org. Chem. 1996, 61. 6028.


Scheme 4






Efforts to carry out a direct domino conversion of DCP and diallyldimethylsilane (18) into the cage system 20 at 110 °C caused both decomposition and isomerization processes of the silvlated reagent, and the complex reaction mixtures contained only small amounts of the desired product (<sup>1</sup>H NMR). On the other hand, although the cyclohexadiene derivative 19 was easily isolated in 66% yield under milder conditions, its subsequent cycloaddition into 20, strongly hampered by the encumbering methyl groups, was achieved in only 32% yield by prolonged heating at the original temperature (Scheme 4).

Similar steric effects also play a critical role in the reaction of 1 with myrcene (21) characterized by a total sitoselectivity. Thus, the intermediate 22, coming from a primary interaction of DCP upon the terminal unsubstituted double bond of the terpene, afforded, together





with the corresponding aromatization product 24 (19%), the more strained tricyclooctene 25 (24%) rather than the cage derivative 23 by a preferential cycloaddition with the less hindered vicinal dienophilic moiety (Scheme 5).

Replacement of **21** with the homochiral terpenes **26a**, **b** caused a remarkable reduction of reactivity, and very complex reactions were observed under forcing conditions; nevertheless, whereas in the first case a 3:1 mixture of the diastereomeric tricycloundecenes 30a and 31a was obtained in 28% yield together with a minor amount of the aromatic product 29a, in the second one we succeeded in isolating, in addition to 29b (6%), the cage compounds 30b and 31b in 12% and 19% yields, respectively (Scheme 6).

Bearing in mind that the intramolecular cycloadditions of the diastereomers 27a,b and 28a,b must compete effectively both with aromatization processes and intermolecular Diels-Alder reactions of the same species with the excess of the bis-dienophiles 26a,b, the clear-cut

<sup>(6)</sup> For the greater reactivity of the bis-allyl amide moiety with respect to the corresponding ester in intramolecular Diels–Alder reactions, see: Swarbrick, T. M.; Markó, I. E.; Kennard, L. *Tetrahedron* Lett. 1991, 32, 2549.

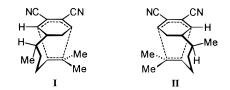
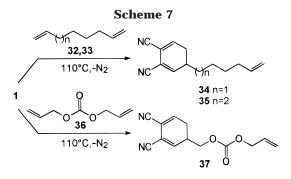




Figure 1.



predominance of **30a** over **31a** can be tentatively accounted for by a different stabilization of the corresponding chairlike transition structures **I** and **II** (Figure 1), the latter being disfavored by a 1,3-diaxial methyl/ hydrogen interaction.<sup>7</sup>

Repeated attempts to build up larger carbo- or heterocage skeletons with octa-1,7-diene (**32**), nona-1,8-diene (**33**), and diallyl carbonate (**36**) were completely unsuccessful, probably due to unfavorable entropic effects and repulsive nonbonding interactions. Moreover, although compounds **34**, **35**, and **37** were easily obtained in 50– 52% yields from **1** and the above dienes (1 equiv, 110 °C) (Scheme 7), we did not succeed in isolating any phthalonitrile as a pure product from the complex reaction mixtures gained by heating the cyclohexadiene derivatives at higher temperature.

The structures of the new compounds **5**, **8**, **11**, **14**, **17**, **19**, **20**, **24**, **25**, **29**–**31a,b**, **34**, **35**, and **37** were determined on the basis of analytical and spectral evidence (Experimental Section). Whereas the <sup>1</sup>H NMR patterns of the 2,3-dicyanocyclohexa-1,3-dienes **19**, **34**, **35**, and **37** are characterized by a triplet and a doublet at  $\delta$  6.79–6.85 and 6.73–6.74 for the H-1 and H-4 protons, respectively, their <sup>13</sup>C coupled spectra exhibit two doublets at  $\delta$  143.5–150.9 for the corresponding alkenyl carbons. As for the benzoate **14**, the CH<sub>2</sub> resonance of the allyl moiety was detected as a doublet of triplets at  $\delta$  4.88.

The stereochemistry at C-10 for the  $\gamma$ -lactone **11**, determined by the *E* configuration of the cinnamate **10**, was confirmed by the lack of coupling between H-10 and the vicinal H-6 proton ( $\theta$  = ca. 90°), which gives rise to a doublet ( $J_{6,7}$  = 4.9 Hz) at  $\delta$  3.07 (Figure 2). The structure of **25** was firmly established on the basis of the <sup>1</sup>H and <sup>13</sup>C NMR resonances at  $\delta$  5.05 and 123.1, respectively, for the CH group of the terminal alkene moiety; furthermore, as previously reported for 3,4-dicyano-1,7-dimethyl-tricyclo[3.2.1.0<sup>2.7</sup>]oct-3-ene,<sup>4</sup> a doublet (J = 12.4 Hz) was observed at  $\delta$  0.92 for the remarkably shielded endo protons at positions 6 and 8, together with a triplet (J = 4.8 Hz) at  $\delta$  3.0 for the bridgehead H-5. Finally, whereas the structures of the diastereomers **30a** and **31a** were

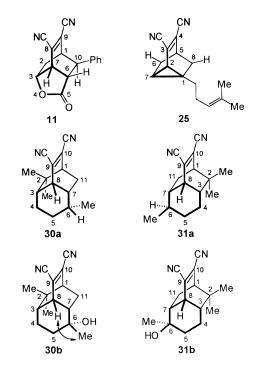



Figure 2.

attained, according to the spectral behavior of epimeric 6-methyltricyclo[5.3.1.0<sup>3,8</sup>]undecanes,<sup>8</sup> in the light of the diagnostic downfield shift observed for the methyl group at position 6 on going from the endo ( $\delta$  0.88) to the exo configuration ( $\delta$  1.05), **30b** was distinguished from **31b** on the basis of a positive NOE effect detected for the former between the same substituent and H-8.

In conclusion, despite evident limits arising from a scarce reactivity toward a few counterparts or concomitant undesired evolution processes of the cyclohexadiene key intermediates, compound **1** can be rightly regarded as a versatile synthon in the realm of *masked or latent bis-dienes*<sup>9</sup> for elegant entries into diverse cage systems through purely pericyclic domino reactions.

## **Experimental Section**

**General Procedures.** Melting points are uncorrected. IR spectra of solid and oily products were measured as KBr pellets and liquid films, respectively. Unless otherwise stated, <sup>1</sup>H and <sup>13</sup>C NMR spectra were recorded in CDCl<sub>3</sub> solutions at 200 and 50 MHz, respectively. Silica gel plates (Merck F<sub>254</sub>) and silica gel 60 (Merck, 230–400 mesh) were used for TLC and flash chromatographies, respectively: petroleum ether employed for chromatographic workup refers to the fractions of bp 40–70 °C. HPLC was performed with a RP18 5  $\mu$ m column using CH<sub>3</sub>-CN/H<sub>2</sub>O as eluent.

Thermal Reactions of 4,5-Dicyanopyridazine (1) with the Dienes 2, 6, 10, 12, 15, 18, 21, 26a,b, 32, 33, and 36: Synthesis of Compounds 5, 8, 11, 14, 17, 19, 24, 25, 29– 31a,b, 34, 35, and 37. General Procedure. Unless otherwise indicated, a mixture of 1 (1 mmol) and the reagent in CHCl<sub>3</sub> (1 mL) was heated at 110 °C in a screw-capped tube (Pyrex no. 13), and the residue left by evaporation to dryness under reduced pressure was subjected to flash chromatography. When the conversion of 1 was incomplete, the yields of the isolated compounds were determined on the basis of the recovered starting material. Analytical samples of oily products were obtained by dissolution in dichloromethane, filtration,

<sup>(7)</sup> Impressive diastereospecificity was observed for intramolecular cycloadditions of cyclohexa-1,3-diene derivatives as a consequence of a more pronounced methyl/methyl overcrowding: Näf, F.; Decorzant, R.; Giersch, W.; Ohloff, G. *Helv. Chim. Acta* **1981**, *64*, 1387.

<sup>(8)</sup> Yamada, K.; Kyotani, Y.; Manabe, S.; Suanki, M. *Tetrahedron* **1979**, *35*, 293.

<sup>(9)</sup> Winkler, J. D. Chem. Rev. 1996, 96, 167.

evaporation to dryness, and prolonged evacuation at room temperature  $(10^{-2}$  Torr).

A. Treatment of 1 with allyl vinyl ether (2) (0.421 g, 0.55 mL, 5 mmol) for 24 h afforded 8,9-dicyano-4-oxatricyclo-[4.3.1.0<sup>3.7</sup>]dec-8-ene (5) (0.184 g, 99%) that was crystallized from ether as ivory-colored needles: mp 117–118 °C; IR 2215, 1105 cm<sup>-1</sup>; <sup>1</sup>H NMR  $\delta$  1.45–1.84 (m, 4H), 2.34–2.45 (m, 1H), 3.01 (m, 1H), 3.31 (t, J = 4.6 Hz, 1H), 3.78 (m, AB part of an ABX system, J = 8.1 and 3.7 Hz, 2H), 4.22 (t, J = 6.0 Hz, 1H); <sup>13</sup>C NMR  $\delta$  32.8 (d), 33.9 (t), 35.2 (d), 36.9 (t), 44.8 (d), 73.1 (d), 73.4 (t), 113.7 (s), 114.3 (s), 125.6 (s), 134.4 (s). Anal. Calcd for C<sub>11</sub>H<sub>10</sub>N<sub>2</sub>O: C, 70.95; H, 5.41; N, 15.04. Found: C, 70.62; H, 5.41; N, 15.37.

**B**. The crude reaction product of **1** and vinyl methacrylate (**6**) (1.121 g, 1.20 mL, 10 mmol) (4 days) was mixed with sand and sublimed at 50 °C/18 Torr to give phthalonitrile (**9**) (0.050 g, 39%); the sand was then extracted with dichloromethane (2 × 15 mL) to yield (1*SR*3*RS*,6*SR*,7*RS*)-8,9-dicyano-6-methyl-4-oxatricyclo[4.3.1.0<sup>3,7</sup>]dec-8-en-5-one (**8**) (0.120 g, 56%) as an ivory-colored solid: mp 212–213 °C (from chloroform); IR 2220, 1783 cm<sup>-1</sup>; <sup>1</sup>H NMR (DMSO-*d*<sub>6</sub>)  $\delta$  1.03 (s, 3H), 1.24–1.38 (m, 1H), 1.56–1.83 (m, 2H), 2.06 (m, 1H), 3.26 (br s, 1H), 3.91 (d, *J* = 5.6 Hz, 1H), 4.72 (t, *J* = 5.6 Hz, 1H); <sup>13</sup>C NMR (DMSO-*d*<sub>6</sub>)  $\delta$  19.6 (q), 31.0 (t), 35.2 (d), 35.6 (t), 41.7 (s), 47.85 (d), 73.7 (d), 114.4 (s), 115.05 (s), 124.0 (s), 135.5 (s), 179.3 (s). Anal. Calcd for C<sub>12</sub>H<sub>10</sub>N<sub>2</sub>O<sub>2</sub>: C, 67.28; H, 4.71; N, 13.08. Found: C, 67.00; H, 4.63; N, 13.40.

C. Chromatographic workup [toluene/ethyl acetate (20:3 v/v)] of the crude product from 1 and (*E*)-vinyl cinnamate (10) (0.871 g, 0.81 mL, 5 mmol) (9 days) afforded (1*RS*,3*RS*,6*SR*, 7*SR*,10*RS*)-8,9-dicyano-10-phenyl-4-oxatricyclo[4.3.1.0<sup>3.7</sup>]dec-8-en-5-one (11) ( $R_f$ = 0.34, 0.095 g, 34%), as colorless crystals: mp 166.5–167 °C (from ether); IR 2227, 1778 cm<sup>-1</sup>; <sup>1</sup>H NMR  $\delta$  1.80 (m, 1H), 2.20 (m, 1H), 3.07 (sbr d, *J* = 4.9 Hz, 1H), 3.50 (m, 1H), 3.59 (m, 1H), 4.07 (t, *J* = 4.9 Hz, 1H), 4.78 (dd, *J* = 7.5 and 4.9 Hz, 1H), 6.96–7.03 (m, 2H), 7.30–7.42 (m, 3H); <sup>13</sup>C NMR  $\delta$  33.25 (t), 43.15 (d), 43.3 (d), 43.8 (d), 45.6 (d), 74.3 (d), 113.0 (s), 113.5 (s), 123.9 (s), 126.9 (d), 128.15 (d), 129.3 (d), 133.9 (s), 138.7 (s), 175.65 (s). Anal. Calcd for C<sub>17</sub>H<sub>12</sub>N<sub>2</sub>-O<sub>2</sub>: C, 73.90; H, 4.38; N, 10.14. Found: C, 73.79; H, 4.48; N, 9.87.

**D**. Chromatographic resolution [petroleum ether/ethyl acetate (4:1 v/v)] of the residue coming from **1** and allyl acrylate (**12**) (0.561 g, 0.56 mL, 5 mmol) (48 h) gave allyl 3,4-dicyanobenzoate (**14**) ( $R_f$ =0.43, 0.085 g, 40%) as ivory-colored crystals: mp 62–62.5 °C (from *n*-pentane/ether); IR 2235, 1726 cm<sup>-1</sup>; <sup>1</sup>H NMR  $\delta$  4.88 (dt, J = 6.0 and 1.2 Hz, 2H), 5.33–5.49 (m, 2H), 5.93–6.13 (m, 1H), 7.93 (d, J = 8.1 Hz, 1H), 8.37–8.47 (m, 2H); <sup>13</sup>C NMR  $\delta$  67.1 (t), 114.6 (s), 114.7 (s), 116.5 (s), 119.4 (s), 120.0 (t), 131.0 (d), 133.8 (d), 133.9 (d), 134.3 (d), 134.8 (s), 162.8 (s). Anal. Calcd for C<sub>12</sub>H<sub>8</sub>N<sub>2</sub>O<sub>2</sub>: C, 67.92; H, 3.80; N, 13.20. Found: C, 67.68; H, 3.80; N, 12.96.

**E**. Operating as above with ethyl acetate/petroleum ether (2:1 v/v) as eluent, the crude reaction product from **1** and *N*,*N*-diallyl acrylamide (**15**)<sup>10</sup> (0.166 g, 1.1 mmol) (6 days) yielded 5-allyl-9,10-dicyano-5-azatricyclo[5.3.1.0<sup>3,8</sup>]undec-9-en-4-one (**17**) ( $R_f = 0.32$ , 0.094 g, 37%) that was crystallized from ethyl acetate as colorless needles: mp 180.5–181 °C; IR 2216, 1634 cm<sup>-1</sup>; <sup>1</sup>H NMR  $\delta$  1.44 (ddd, J = 13.0, 5.1 and 2.6 Hz, 1H), 1.66–2.20 (m, 4H), 2.52–2.65 (m, 1H), 3.08 (quintet, J = 2.6 Hz, 1H), 3.14 (dd, J = 4.0 and 2.6 Hz, 1H), 3.35 (m, AB part of an ABX system, J = 12.7, 4.0, and 1.6 Hz, 2H), 3.80 (m, 1H), 4.18 (m, 1H), 5.14–5.29 (m, 2H), 5.63–5.83 (m, 1H); <sup>13</sup>C NMR  $\delta$  29.0 (t), 29.2 (d), 33.5 (t), 34.4 (d), 35.4 (d), 38.0 (d), 49.0 (t), 50.1 (t), 113.6 (s), 113.7 (s), 118.8 (t), 129.3 (s), 131.9 (d), 133.1 (s), 170.3 (s). Anal. Calcd for C<sub>15</sub>H<sub>15</sub>N<sub>3</sub>O: C, 71.13; H, 5.97; N, 16.59. Found: C, 71.07; H, 5.99; N, 16.33.

**F**. Chromatographic workup [petroleum ether/ethyl acetate (8:1 v/v)] of the reaction product obtained from **1** and diallyldimethylsilane (**18**) (0.702 g, 0.91 mL, 5 mmol) at 70 °C for 6 days gave allyl[(2,3-dicyanocyclohexa-1,3-dien-5-yl)methyl]- dimethylsilane (**19**) ( $R_f$ = 0.35, 0.160 g, 66%), as a pale yellow oil: IR 2226 cm<sup>-1</sup>; <sup>1</sup>H NMR  $\delta$  0.06 (s, 6H), 0.78 (m, 2H), 1.54 (d, J = 8.5 Hz, 2H), 2.27 (m, 1H), 2.50–2.77 (m, 2H), 4.82–4.90 (m, 2H), 5.73 (m, 1H), 6.73 (d, J = 4.4 Hz, 1H), 6.79 (t, J = 4.6 Hz, 1H); <sup>13</sup>C NMR  $\delta$  –2.9 (q), 19.1 (t), 23.5 (t), 28.65 (d), 30.4 (t), 107.2 (s), 108.5 (s), 113.9 (t), 115.0 (s), 115.1 (s), 133.9 (d), 143.9 (d), 150.9 (d). Anal. Calcd for C<sub>14</sub>H<sub>18</sub>N<sub>2</sub>Si: C, 69.38; H, 7.48; N, 11.56. Found: C, 69.04; H, 7.59; N, 11.22.

**G.** Chromatographic resolution [petroleum ether/ethyl acetate (7:1 v/v)] of the residue coming from **1** and myrcene (**21**) (0.150 g, 0.19 mL, 1.1 mmol) (4 days) afforded, in order of decreasing mobility, 1,2-dicyano-4-(6'-methylhepta-1',5'-dien-2'-yl)benzene (**24**) ( $R_f$  = 0.61, 0.039 g, 19%) as a yellow oil: IR 2234 cm<sup>-1</sup>; <sup>1</sup>H NMR  $\delta$  1.52 (s, 3H), 1.66 (s, 3H), 2.12 (q, J = 7.5 Hz, 2H), 2.51 (t, J = 7.5 Hz, 2H), 5.07 (m, 1H), 5.33 (sbr s, 1H), 5.44 (sbr s, 1H), 7.72–7.80 (m, 3H); <sup>13</sup>C NMR  $\delta$  17.7 (q), 25.6 (q), 26.5 (t), 34.6 (t), 113.9 (s), 115.4 (s), 115.55 (s), 116.0 (s), 117.4 (t), 122.7 (d), 130.5 (d), 131.1 (d), 132.8 (s), 133.5 (d), 145.15 (s), 146.9 (s). Anal. Calcd for C<sub>16</sub>H<sub>16</sub>N<sub>2</sub>: C, 81.32; H, 6.82; N, 11.85. Found: C, 81.04; H, 6.53; N, 12.09.

The second band gave 3,4-dicyano-1-(2'-methylpent-2'-en-5'-yl)tricyclo[ $3.2.1.0^{2.7}$ ]oct-3-ene (**25**) ( $R_f = 0.49$ , 0.050 g, 24%) as a pale yellow oil: IR 2214 cm<sup>-1</sup>; <sup>1</sup>H NMR  $\delta$  0.92 (d, J = 12.4 Hz, 2H), 1.50–1.77 (m, 10H), 1.89–2.11 (m, 4H), 3.0 (t, J = 4.8 Hz, 1H), 5.05 (m, 1H); <sup>13</sup>C NMR  $\delta$  17.7 (q), 24.1 (d), 25.7 (q), 26.2 (t), 27.3 (t), 27.6 (d), 30.6 (t), 31.5 (t), 31.6 (s), 36.6 (d), 114.8 (s), 115.1 (s), 122.5 (s), 123.1 (d), 123.7 (s), 132.5 (s). Anal. Calcd for C<sub>16</sub>H<sub>18</sub>N<sub>2</sub>: C, 80.63; H, 7.61; N, 11.75. Found: C, 80.42; H, 7.38; N, 12.03.

Some unreacted DCP was recovered from the slowest moving fractions ( $R_f = 0.11, 0.017$  g).

H. Operating as above with petroleum ether/ethyl acetate (12:1 v/v) as eluent, the crude product of **1** with (*R*)-(-)-β-citronellene (**26a**) (0.691 g, 0.91 mL, 5 mmol) (5 days) yielded a 3:1 mixture of (1.S, 3.S, 6.R, 7.R, 8.R)-9,10-dicyano-2,2,6-trimethyltricyclo[5.3.1.0<sup>3.8</sup>]undec-9-ene (**30a**) and (1.R, 3.R, 6.R, 7.S, 8.S)-9,10-dicyano-2,2,6-trimethyltricyclo[5.3.1.0<sup>3.8</sup>]undec-9-ene (**31a**) (*R*<sub>f</sub> = 0.50, 0.058 g, 28%) as a white solid: <sup>1</sup>H NMR δ 0.85 (s), 0.88 (d, *J* = 6.6 Hz, 3H), [1.05 (d, *J* = 7.3 Hz)], 1.14 (s), [1.19 (s)], 1.20-2.0 (m), 2.47 (m), 2.58 (t, *J* = 2.5 Hz), [2.85 (m)]; <sup>13</sup>C NMR δ [18.2 (q)], 20.4 (q), 20.5 (t), [20.85 (t)], 21.4 (q), [21.8 (q)], [22.4 (t)], 25.5 (t), 25.6 (t), [26.1 (t)], [30.4 (d)], 33.0 (q), [33.2 (q)], 33.5 (d), [36.1 (d)], 36.2 (d), 37.1 (d), [37.7 (d)], 38.15 (s), [38.4 (s)], [39.3 (d)], 46.4 (d), 47.7 (d), [48.15 (d)], [113.7 (s)], 114.5 (s), [114.6 (s)], 114.9 (s), 131.05 (s), [131.1 (s)], 132.3 (s), [132.9 (s)].<sup>11</sup>

HPLC resolution of the above mixture yielded **30a** (0.015 g) as a white solid; an analytical sample, obtained by washing with the minimun amount of anhydrous ether, gradually wrinkled above 80 °C and melted at 93–94 °C:  $[\alpha]^{22}_D = (+)$ -72.6° (*c* 0.5, CHCl<sub>3</sub>); IR 2214 cm<sup>-1</sup>; <sup>1</sup>H NMR  $\delta$  0.85 (s, 3H), 0.88 (d, *J* = 6.6 Hz, 3H), 1.14 (s, 3H), 1.20–1.82 (m, 9H), 2.47 (t, *J* = 2.8 Hz, 1H), 2,58 (t, *J* = 2.5 Hz, 1H). Anal. Calcd for C<sub>16</sub>H<sub>20</sub>N<sub>2</sub>: C, 79.96; H, 8.39; N, 11.66. Found: C, 79.68; H, 8.33; N, 11.85.

The second band gave 1,2-dicyano-4-[(6'*R*)-2'-methylhept-2'-en-6'-yl)]benzene (**29a**) ( $R_f = 0.37$ , 0.012 g, 6%) as a pale yellow oil:  $[\alpha]^{24}_{\rm D} = (-)100.0^{\circ}$  (*c* 0.2, CHCl<sub>3</sub>); IR 2234 cm<sup>-1</sup>; <sup>1</sup>H NMR  $\delta$  1.26 (d, J = 7.0 Hz, 3H), 1.50 (s, 3H), 1.58–1.64 (m, 2H), 1.67 (s, 3H), 1.80–1.88 (m, 2H), 2.83 (sextet, J = 7.0 Hz, 1H), 5.02 (m, 1H), 7.51–7.75 (m, 3H); <sup>13</sup>C NMR  $\delta$  17.65 (q), 21.5 (q), 25.6 (q), 25.7 (t), 37.7 (t), 39.4 (d), 113.1 (s), 115.5 (s), 115.6 (s), 115.9 (s), 123.2 (d), 132.0 (d), 132.4 (d), 132.5 (s), 133.5 (d), 154.4 (s). Anal. Calcd for C<sub>16</sub>H<sub>18</sub>N<sub>2</sub>: C, 80.63; H, 7.61; N, 11.75. Found: C, 80.30; H, 7.35; N, 12.06.

A small amount of 1 (0.020 g) was recovered by washing the column with ethyl acetate.

**I**. The reaction mixture of **1** with (R)-(-)-linalool (**26b**) (0.771 g, 0.89 mL, 5 mmol) (8 days) was resolved into three components with petroleum ether/ethyl acetate (2:1 v/v) as eluent. The faster running band afforded 1,2-dicyano-4-[(6'R)-6'-hydroxy-2'-methylhept-2'-en-6'-yl)]benzene (**29b**) ( $R_f = 0.60$ ,

<sup>(10)</sup> Naito, T.; Honda, Y.; Miyata, O.; Ninomiya, I. J. Chem. Soc., Perkin Trans. 1 1995, 19.

<sup>(11)</sup> The values in square brackets refer to the minor diastereomer.

0.016 g, 6%) as a yellow oil:  $[\alpha]^{24}{}_D = (-)2.6^{\circ}$  (c 0.2, CHCl<sub>3</sub>); IR 3497, 2237 cm<sup>-1</sup>; <sup>1</sup>H NMR  $\delta$  1.48 (sbr s, 3H), 1.55 (s, 3H), 1.64 (sbr s, 3H), 1.84–1.90 (m, 4H), 2.16 (sbr s, 1H), 5.04 (m, 1H), 7.78 (m, 2H), 7.93 (m, 1H); <sup>13</sup>C NMR  $\delta$  17.7 (q), 22.6 (q), 25.6 (q), 30.5 (t), 43.3 (t), 74.7 (s), 113.7 (s), 115.45 (s), 115.6 (s), 115.8 (s), 123.0 (d), 129.8 (d), 130.5 (d), 133.3 (d), 133.4 (s), 154.6 (s). Anal. Calcd for C<sub>16</sub>H<sub>18</sub>N<sub>2</sub>O: C, 75.56; H, 7.13; N, 11.01. Found: C, 75.28; H, 6.99; N, 11.35.

The following band gave (1*R*,3*R*,6*R*,7*R*,8*R*)-9,10-dicyano-6-hydroxy-2,2,6-trimethyltricyclo[5.3.1.0<sup>3.8</sup>]undec-9-ene (**31b**) ( $R_f$ = 0.40, 0.048 g, 19%) that, after crystallization from ether, gradually wrinkled above 165 °C and melted at 181–182 °C: [ $\alpha$ ]<sup>19</sup><sub>D</sub> = (-)66.0° (*c* 0.45, CHCl<sub>3</sub>); IR 2221 cm<sup>-1</sup>; <sup>1</sup>H NMR  $\delta$  0.87 (s, 3H), 1.16 (s, 3H), 1.24 (s, 3H), 1.30–1.80 (m, 9H), 2.50 (m, 1H), 3.33 (m, 1H); <sup>13</sup>C NMR  $\delta$  21.6 (t), 21.9 (q), 24.2 (t), 30.1 (q), 30.9 (t), 33.05 (q), 36.9 (d), 38.2 (s), 40.2 (d), 41.85 (d), 48.1 (d), 71.45 (s), 114.5 (s), 114.8 (s), 131.2 (s), 132.8 (s). Anal. Calcd for C<sub>16</sub>H<sub>20</sub>N<sub>2</sub>O: C, 74.97; H, 7.86; N, 10.93. Found: C, 74.68; H, 7.62; N, 11.18.

The slowest moving fractions yielded (1*S*,3*S*,6*R*,7*S*,8*S*)-9,-10-dicyano-6-hydroxy-2,2,6-trimethyltricyclo[5.3.1.0<sup>3.8</sup>]undec-9-ene (**30b**) ( $R_f = 0.20$ , 0.031 g, 12%), as a pale yellow oil:  $[\alpha]^{22}_{D} = (+)67.0^{\circ}$  (*c* 0.95, CHCl<sub>3</sub>); IR 3473, 2223 cm<sup>-1</sup>; <sup>1</sup>H NMR  $\delta$  0.87 (s, 3H), 1.0–2.10 (m, 8H), 1.19 (s, 3H), 1.24 (s, 1H), 1.35 (s, 3H), 2.51 (t, J = 2.7 Hz, 1H), 2.75 (t, J = 2.8 Hz, 1H); <sup>13</sup>C NMR  $\delta$  21.55 (q), 22.8 (t), 23.7 (t), 27.4 (q), 31.7 (t), 33.1 (q), 37.1 (d), 38.1 (s), 42.7 (d), 43.1 (d), 47.6 (d), 71.6 (s), 114.4 (s), 114.7 (s), 129.8 (s), 133.55 (s). Anal. Calcd for C<sub>16</sub>H<sub>20</sub>N<sub>2</sub>O: C, 74.97; H, 7.86; N, 10.93. Found: C, 75.21; H, 7.98; N, 10.70.

L. Chromatographic workup [petroleum ether/ethyl acetate (4:1 v/v)] of the reaction product of **1** and octa-1,7-diene (**32**) (0.121 g, 0.17 mL, 1.1 mmol) (4 days) afforded 2,3-dicyano-5-(hexen-6'-yl)cyclohexa-1,3-diene (**34**) ( $R_f$ =0.41, 0.110 g, 52%) as a pale yellow oil: IR 2226 cm<sup>-1</sup>; <sup>1</sup>H NMR  $\delta$  1.29–1.50 (m, 6H), 2.04 (q, J = 6.8 Hz, 2H), 2.21–2.34 (m, 1H), 2.46–2.64 (m, 2H), 4.92–5.04 (m, 2H), 5.66–5.87 (m, 1H), 6.74 (d, J = 3.7 Hz, 1H), 6.81 (t, J = 4.6 Hz, 1H); <sup>13</sup>C NMR  $\delta$  25.7 (t), 27.4 (t), 28.4 (t), 32.2 (d), 32.8 (t), 33.3 (t), 107.8 (s), 108.3 (s), 114.7 (t), 115.0 (s), 115.05 (s), 138.2 (d), 144.45 (d), 149.1 (d). Anal. Calcd for C<sub>14</sub>H<sub>16</sub>N<sub>2</sub>: C, 79.21; H, 7.60; N, 13.20. Found: C, 78.87; H, 7.49; N, 13.53.

**M**. Operating as above with petroleum ether/ethyl acetate (7:1 v/v) as eluent, the residue from the reaction of **1** with nona-1,8-diene (**33**) (0.137 g, 0.18 mL, 1.1 mmol) (5 days) yielded 2,3-dicyano-5-(hepten-7'-yl)cyclohexa-1,3-diene (**35**) ( $R_r$ = 0.20,

0.113 g, 50%) as a colorless liquid: IR 2227 cm<sup>-1</sup>; <sup>1</sup>H NMR  $\delta$  1.20–1.50 (m, 8H), 2.04 (q, J=6.8 Hz, 2H), 2.25–2.32 (m, 1H), 2.49–2.60 (m, 2H), 4.91–5.03 (m, 2H), 5.78 (m, 1H), 6.74 (d, J=4.1 Hz, 1H), 6.81 (t, J=4.6 Hz, 1H);  $^{13}\mathrm{C}$  NMR  $\delta$  26.25 (t), 27.6 (t), 28.6 (t), 28.8 (t), 32.3 (d), 33.05 (t), 33.5 (t), 108.1 (s), 108.6 (s), 114.5 (t), 114.95 (s), 115.0 (s), 138.6 (d), 144.2 (d), 149.05 (d). Anal. Calcd for C $_{15}H_{18}N_2$ : C, 79.61; H, 8.02; N, 12.38. Found: C, 79.91; H, 7.85; N, 12.13.

**N**. Chromatographic purification [petroleum ether/ethyl acetate (2:1 v/v)] of the brown residue coming from **1** and diallyl carbonate (**36**) (0.156 g, 0.16 mL, 1.1 mmol) (5 days) gave allyl (2,3-dicyanocyclohexa-1,3-dien-5-yl)methyl carbonate (**37**) ( $R_f = 0.30$ , 0.127 g, 52%) as a yellow oil; IR 2229, 1746 cm<sup>-1</sup>; <sup>1</sup>H NMR  $\delta$  2.34–2.70 (m, 2H), 2.90–3.09 (m, 1H), 4.17 (m, 2H), 4.64 (d, J = 5.9 Hz, 2H), 5.30 (sbr d, J = 10.3 Hz, 1H), 5.38 (sbr d, J = 16.5 Hz, 1H), 5.84–6.03 (m, 1H), 6.74 (d, J = 4.0 Hz, 1H), 6.85 (t, J = 4.6 Hz, 1H); <sup>13</sup>C NMR  $\delta$  24.5 (t), 32.5 (d), 67.2 (t), 68.95 (t), 108.75 (s), 110.1 (s), 114.5 (s), 114.6 (s), 119.5 (t), 131.0 (d), 143.5 (d), 143.8 (d), 154.5 (s). Anal. Calcd for C<sub>13</sub>H<sub>12</sub>N<sub>2</sub>O<sub>3</sub>: C, 63.93; H, 4.95; N, 11.47. Found: C, 63.61; H, 4.75; N, 11.70.

**9,10-Dicyano-5,5-dimethyl-5-silatricyclo[5.3.1.0<sup>3,8</sup>]undec-9-ene (20).** A solution of compound **19** (0.071 g, 0.29 mmol) in CHCl<sub>3</sub> (0.5 mL) was heated at 110 °C in a sealed tube for 9 days, and the residue left by evaporation to dryness was subjected to flash chromatography with petroleum ether/ethyl acetate (15:1 v/v) as eluent to yield **20** ( $R_f$  = 0.48, 0.018 g, 32%) that was crystallized from ether as colorless needles: mp 146–147 °C; IR 2218 cm<sup>-1</sup>; <sup>1</sup>H NMR  $\delta$  0.02 (s, 3H), 0.28 (s, 3H), 0.76–1.08 (m, 4H), 1.42 (ddd, J = 12.8, 5.5, and 2.2 Hz, 2H), 1.77 (m, 2H), 2.09–2.23 (m, 2H), 2.54 (t, J = 2.6 Hz, 1H), 2.95 (m, 1H); <sup>13</sup>C NMR  $\delta$  0.1 (q), 2.6 (q), 17.7 (t), 30.1 (d), 32.3 (t), 35.8 (d), 45.1 (d), 114.3 (s), 114.6 (s), 130.2 (s), 134.7 (s). Anal. Calcd for C<sub>14</sub>H<sub>18</sub>N<sub>2</sub>Si: C, 69.38; H, 7.48; N, 11.56. Found: C, 69.05; H, 7.46; N, 11.25.

Some unreacted starting material ( $R_f = 0.12$ , 0.015 g) was recovered from the slower moving band.<sup>12</sup>

**Acknowledgment.** We wish to thank Mrs. Brunella Innocenti for the analytical data.

## JO991191V

<sup>(12)</sup> When a total conversion of **19** was attained under more forcing conditions, the desired compound **20** was isolated in much lower yield from the more complex reaction mixture.